Displaying 61 – 80 of 125

Showing per page

Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics

Tatiana Bandman, Shelly Garion, Boris Kunyavskiĭ (2014)

Open Mathematics

We present a survey of results on word equations in simple groups, as well as their analogues and generalizations, which were obtained over the past decade using various methods: group-theoretic and coming from algebraic and arithmetic geometry, number theory, dynamical systems and computer algebra. Our focus is on interrelations of these machineries which led to numerous spectacular achievements, including solutions of several long-standing problems.

Espacios de producto interno (II).

Palaniappan Kannappan (1995)

Mathware and Soft Computing

Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.

Essential sign change numbers of full sign pattern matrices

Xiaofeng Chen, Wei Fang, Wei Gao, Yubin Gao, Guangming Jing, Zhongshan Li, Yanling Shao, Lihua Zhang (2016)

Special Matrices

A sign pattern (matrix) is a matrix whose entries are from the set {+, −, 0} and a sign vector is a vector whose entries are from the set {+, −, 0}. A sign pattern or sign vector is full if it does not contain any zero entries. The minimum rank of a sign pattern matrix A is the minimum of the ranks of the real matrices whose entries have signs equal to the corresponding entries of A. The notions of essential row sign change number and essential column sign change number are introduced for full sign...

Estimation of the noncentrality matrix of a noncentral Wishart distribution with unit scale matrix. A matrix generalization of Leung's domination result.

Heinz Neudecker (2004)

SORT

The main aim is to estimate the noncentrality matrix of a noncentral Wishart distribution. The method used is Leung's but generalized to a matrix loss function. Parallelly Leung's scalar noncentral Wishart identity is generalized to become a matrix identity. The concept of Löwner partial ordering of symmetric matrices is used.

Étienne Bézout : analyse algébrique au siècle des lumières

Liliane Alfonsi (2008)

Revue d'histoire des mathématiques

Le but de cet article, à travers l’étude des travaux en analyse algébrique finie d’Étienne Bézout (1730-1783), est de mieux faire connaître ses résultats, tels qu’il les a effectivement trouvés, et de mettre en valeur aussi bien les points de vue novateurs que les méthodes originales, mis en œuvre à cet effet. L’idée de ramener le problème de l’élimination d’une ou plusieurs inconnues à l’étude d’un système d’équations du premier degré, son utilisation inhabituelle des coefficients indéterminés...

Currently displaying 61 – 80 of 125