Displaying 41 – 60 of 125

Showing per page

Elementary linear algebra for advanced spectral problems

Johannes Sjöstrand, Maciej Zworski (2007)

Annales de l’institut Fourier

We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical...

Elementary triangular matrices and inverses of k-Hessenberg and triangular matrices

Luis Verde-Star (2015)

Special Matrices

We use elementary triangular matrices to obtain some factorization, multiplication, and inversion properties of triangular matrices. We also obtain explicit expressions for the inverses of strict k-Hessenberg matrices and banded matrices. Our results can be extended to the cases of block triangular and block Hessenberg matrices. An n × n lower triangular matrix is called elementary if it is of the form I + C, where I is the identity matrix and C is lower triangular and has all of its nonzero entries...

Embedded Lattice and Properties of Gram Matrix

Yuichi Futa, Yasunari Shidama (2017)

Formalized Mathematics

In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm [16] and cryptographic systems with lattice [17].

Embedding properties of endomorphism semigroups

João Araújo, Friedrich Wehrung (2009)

Fundamenta Mathematicae

Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following: (1) If card Ω ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff c a r d Γ 2 c a r d Ω . In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then...

Envelopes of holomorphy for solutions of the Laplace and Dirac equations

Martin Kolář (1991)

Commentationes Mathematicae Universitatis Carolinae

Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in 𝐂 n are studied. First, geometric description of envelopes of holomorphy over domains in 𝐄 n is given. In more general case, solutions can be continued by integral formulas using values on a real n - 1 dimensional cycle in 𝐂 n . Sufficient conditions for this being possible are formulated.

Equalities for orthogonal projectors and their operations

Yongge Tian (2010)

Open Mathematics

A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we...

Currently displaying 41 – 60 of 125