On the existence of certain matrices
Let A be a finite-dimensional algebra over an algebraically closed field with radical square zero, and such that all simple A-modules have dimension at most two. We give a characterization of those A that have finitely many conjugacy classes of left ideals.
In this paper explicit expressions for solutions of Cauchy problems and two-point boundary value problems concerned with the generalized Riccati matrix differential equation are given. These explicit expressions are computable in terms of the data and solutions of certain algebraic Riccati equations related to the problem. The interplay between the algebraic and the differential problems is used in order to obtain approximate solutions of the differential problem in terms of those of the algebraic...
A matrix whose entries consist of elements from the set is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
A real symmetric matrix G with zero diagonal encodes the adjacencies of the vertices of a graph G with weighted edges and no loops. A graph associated with a n × n non–singular matrix with zero entries on the diagonal such that all its (n − 1) × (n − 1) principal submatrices are singular is said to be a NSSD. We show that the class of NSSDs is closed under taking the inverse of G. We present results on the nullities of one– and two–vertex deleted subgraphs of a NSSD. It is shown that a necessary...