Displaying 1941 – 1960 of 2599

Showing per page

Simultaneous solution of linear equations and inequalities in max-algebra

Abdulhadi Aminu (2011)

Kybernetika

Let a ø p l u s b = max ( a , b ) and a ø t i m e s b = a + b for a , b . Max-algebra is an analogue of linear algebra developed on the pair of operations ( ø p l u s , ø t i m e s ) extended to matrices and vectors. The system of equations A ø t i m e s x = b and inequalities C ø t i m e s x ł e q d have each been studied in the literature. We consider a problem consisting of these two systems and present necessary and sufficient conditions for its solvability. We also develop a polynomial algorithm for solving max-linear program whose constraints are max-linear equations and inequalities.

Simultaneous solutions of operator Sylvester equations

Sang-Gu Lee, Quoc-Phong Vu (2014)

Studia Mathematica

We consider simultaneous solutions of operator Sylvester equations A i X - X B i = C i (1 ≤ i ≤ k), where ( A , . . . , A k ) and ( B , . . . , B k ) are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and ( C , . . . , C k ) is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of ( A , . . . , A k ) and ( B , . . . , B k ) do not intersect, then this system of Sylvester equations has a unique simultaneous solution.

Sincere posets of finite prinjective type with three maximal elements and their sincere prinjective representations

Justyna Kosakowska (2002)

Colloquium Mathematicae

Assume that K is an arbitrary field. Let (I,⪯) be a poset of finite prinjective type and let KI be the incidence K-algebra of I. A classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem 2.1. A complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset I of finite prinjective type with three maximal elements, a complete set of pairwise non-isomorphic sincere indecomposable prinjective...

Singular M-matrices which may not have a nonnegative generalized inverse

Agrawal N. Sushama, K. Premakumari, K.C. Sivakumar (2014)

Special Matrices

A matrix A ∈ ℝn×n is a GM-matrix if A = sI − B, where 0 < ρ(B) ≤ s and B ∈WPFn i.e., both B and Bt have ρ(B) as their eigenvalues and their corresponding eigenvector is entry wise nonnegative. In this article, we consider a generalization of a subclass of GM-matrices having a nonnegative core nilpotent decomposition and prove a characterization result for such matrices. Also, we study various notions of splitting of matrices from this new class and obtain sufficient conditions for their convergence....

Currently displaying 1941 – 1960 of 2599