Strong Right D-Domains.
An exchange ring is strongly separative provided that for all finitely generated projective right -modules and , . We prove that an exchange ring is strongly separative if and only if for any corner of , implies that there exist such that and if and only if for any corner of , implies that there exists a right invertible matrix . The dual assertions are also proved.
A -ring is strongly 2-nil--clean if every element in is the sum of two projections and a nilpotent that commute. Fundamental properties of such -rings are obtained. We prove that a -ring is strongly 2-nil--clean if and only if for all , is strongly nil--clean, if and only if for any there exists a -tripotent such that is nilpotent and , if and only if is a strongly -clean SN ring, if and only if is abelian, is nil and is -tripotent. Furthermore, we explore the structure...
Let be a self-orthogonal class of left -modules. We introduce a class of modules, which is called strongly -Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly -Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly -Gorenstein module can be inherited by its submodules and quotient modules....
An associated ring R with identity is said to be a left FTF ring when the class of the submodules of flat left R-modules is closed under injective hulls and direct products. We prove (Theorem 3.5) that a strongly graded ring R by a locally finite group G is FTF if and only if Re is left FTF, where e is a neutral element of G. This provides new examples of left FTF rings. Some consequences of this Theorem are given.
We interpret the collection of invertible bimodules as a groupoid and call it the Picard groupoid. We use this groupoid to generalize the classical construction of crossed products to what we call groupoid crossed products, and show that these coincide with the class of strongly groupoid graded rings. We then use groupoid crossed products to obtain a generalization from the group graded situation to the groupoid graded case of the bijection from a second cohomology group, defined by the grading...
Let be a weak torsion class of left -modules and a positive integer. A left -module is called -injective if for each -presented left -module ; a right -module is called -flat if for each -presented left -module ; a left -module is called -projective if for each -injective left -module ; the ring is called strongly -coherent if whenever is exact, where is -presented and is finitely generated projective, then is -projective; the ring is called -semihereditary...
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.
We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.
We describe an approach to determining, up to pseudoisomorphism, the structure of a central-torsion module over the Iwasawa algebra of a pro-, -adic, Lie group containing no element of order . The techniques employed follow classical methods used in the commutative case, but using Ore’s method of localisation. We then consider the properties of certain invariants which may prove useful in determining the structure of a module. Finally, we describe the case of pro- subgroups of in detail and...