Binary Lie algebras satisfying the third Engel condition.
Binary operations on algebras of observables are studied in the quantum as well as in the classical case. It is shown that certain natural compatibility conditions with the associative product imply properties which are usually additionally required.
Possession of a unique nonidentity commutator/associator is a property which dominates the theory of loops whose loop rings, while not associative, nevertheless satisfy an ``interesting'' identity. Indeed, until now, with the exception of some ad hoc examples, the only known class of Bol loops whose loop rings satisfy the right Bol identity have this property. In this paper, we identify another class of loops whose loop rings are ``strongly right alternative'' and present various constructions of...
We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.
Forniamo un calcolo esplicito della funzione di partizione di Kostant per algebre di Lie complesse di rango . La tecnica principale consiste nella riduzione a casi più semplici ed all'uso di funzioni generatrici.
We introduce a Lie algebra, which we call adelic -algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.
It is shown how to define the canonic formulation for orthogonal models associated to commutative Jordan algebras. This canonic formulation is then used to carry out inference. The case of models with commutative orthogonal block structures is stressed out.
Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as -modules. As finite-dimensional irreducible -modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.
Soit un corps local non archimédien de caractéristique résiduelle différente de et . Nous définissons strates semi-simples et caractères semi-simples pour le groupe exceptionnel à l’aide des objets analogues pour le groupe , des automorphismes de trialité et d’une correspondance de Glauberman. Nous construisons alors les types semi-simples associés et nous donnons des conditions suffisantes pour que ces types s’induisent irréductiblement, obtenant ainsi des représentations supercuspidales...