Displaying 181 – 200 of 225

Showing per page

Triple automorphisms of simple Lie algebras

Deng Yin Wang, Xiaoxiang Yu (2011)

Czechoslovak Mathematical Journal

An invertible linear map ϕ on a Lie algebra L is called a triple automorphism of it if ϕ ( [ x , [ y , z ] ] ) = [ ϕ ( x ) , [ ϕ ( y ) , ϕ ( z ) ] ] for x , y , z L . Let 𝔤 be a finite-dimensional simple Lie algebra of rank l defined over an algebraically closed field F of characteristic zero, 𝔭 an arbitrary parabolic subalgebra of 𝔤 . It is shown in this paper that an invertible linear map ϕ on 𝔭 is a triple automorphism if and only if either ϕ itself is an automorphism of 𝔭 or it is the composition of an automorphism of 𝔭 and an extremal map of order 2 .

[unknown]

Г.Л. Рыбников (1989)

Zapiski naucnych seminarov Leningradskogo

[unknown]

Guilnard Sadaka (0)

Annales de l’institut Fourier

Weak polynomial identities and their applications

Vesselin Drensky (2021)

Communications in Mathematics

Let R be an associative algebra over a field K generated by a vector subspace V . The polynomial f ( x 1 , ... , x n ) of the free associative algebra K x 1 , x 2 , ... is a weak polynomial identity for the pair ( R , V ) if it vanishes in R when evaluated on V . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three....

Currently displaying 181 – 200 of 225