Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture.
We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups , , and .
Let be a reductive algebraic group, a parabolic subgroup of with unipotent radical , and a closed connected subgroup of which is normalized by . We show that acts on with finitely many orbits provided is abelian. This generalizes a well-known finiteness result, namely the case when is central in . We also obtain an analogous result for the adjoint action of on invariant linear subspaces of the Lie algebra of which are abelian Lie algebras. Finally, we discuss a connection...
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s -groups. This yields a description of spherical...
On munit, naturellement, d’un surproduit l’algèbre extérieure de l’homologie cyclique d’une -algèbre commutative ( étant un corps de caractéristique zéro) à l’aide du produit de Loday-Quillen. On munit d’un surproduit l’homologie de l’algèbre de Lie du groupe linéaire général de à l’aide du produit tensoriel de matrices. On montre que l’isomorphisme d’algèbres de Hopf de Loday-Quillen est compatible avec les surproduits définis ci-dessus. On obtient ainsi une interprétation du produit de Loday-Quillen,...
We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo,...