-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra
In this paper a construction of characteristic classes for a subfoliation is given by using Kamber-Tondeur’s techniques. For this purpose, the notion of -foliated principal bundle, and the definition of its associated characteristic homomorphism, are introduced. The relation with the characteristic homomorphism of -foliated bundles, , the results of Kamber-Tondeur on the cohomology of --algebras. Finally, Goldman’s results on the restriction of foliated bundles to the leaves of a foliation...
We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on (resp. graded Loday structures on , sequences that we call Loday infinity structures on ). We prove a minimal model theorem for Loday infinity algebras and observe that the category contains the category as...
Dans cet article, nous définissons des modules de (co)-homologie , , , , où et sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si est une -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique avec un analogue additif du groupe de -théorie de Milnor .
We study Hom-Lie superalgebras of Heisenberg type. For 3-dimensional Heisenberg Hom-Lie superalgebras we describe their Hom-Lie super structures, compute the cohomology spaces and characterize their infinitesimal deformations.
Hom-Lie algebra (superalgebra) structure appeared naturally in -deformations, based on -derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of -derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second...
We consider the Lie algebra of inner derivations of the -fold tensor product of Manin quantum planes and compute its second cohomology group with trivial coefficients.
Pour un anneau local l’homologie du groupe discret a un comportement tout à fait analogue à l’homologie de l’algèbre de Lie lorsque est une algèbre associative sur un corps de caractéristique zéro. L’objet de cet article est de faire une synthèse (sans démonstration) des résultats connus sur ces groupes d’homologie en exhibant leurs liens avec la -théorie algébrique, l’homologie cyclique et la cohomologie motivique. On y pose un certain nombre de questions et on propose une définition pour...
Nous construisons des généralisations des complexes de Koszul, associées à des symétries vérifiant l’équation de Yang-Baxter. Certains de ces complexes sont acycliques et permettent de calculer l’homologie de Hochschild et cyclique de déformations quantiques d’algèbres symétriques et extérieures. Nous donnons des résultats précis pour l’espace affine quantique multiparamétré. Il est également possible de définir des complexes de Koszul pour des algèbres enveloppantes et de Sridharan d’algèbres de...