Displaying 181 – 200 of 201

Showing per page

Surface Projective Convexe de volume fini

Ludovic Marquis (2012)

Annales de l’institut Fourier

Une surface projective convexe est le quotient d’un ouvert proprement convexe Ω de l’espace projectif réel 2 ( ) par un sous-groupe discret Γ de SL 3 ( ) . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si Ω n’est pas un triangle alors Ω est strictement convexe, à bord 𝒞 1 et qu’une surface projective convexe S est de volume fini si et seulement si la surface duale est de volume fini.

Symbol calculus on the affine group "ax + b"

Qihong Fan (1995)

Studia Mathematica

The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the L p -estimates for Fuchs type pseudodifferential operators.

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Currently displaying 181 – 200 of 201