Two Reductive Dual Pairs in Groups of Type E.
Any two-input left-invariant control affine system of full rank, evolving on the Euclidean group SE (2), is (detached) feedback equivalent to one of three typical cases. In each case, we consider an optimal control problem which is then lifted, via the Pontryagin Maximum Principle, to a Hamiltonian system on the dual space 𝔰𝔢 (2)*. These reduced Hamilton − Poisson systems are the main topic of this paper. A qualitative analysis of each reduced system is performed. This analysis...
Nous utilisons la théorie des paires couvrantes de C. Bushnell et P. Kutzko afin de déterminer des types pour chaque classe d’inertie de représentations supercuspidales irréductibles des sous-groupes de Levi maximaux de et de , où est un corps local non archimédien de caractéristique résiduelle impaire.
We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps...