Displaying 241 – 260 of 275

Showing per page

On universal enveloping algebras in a topological setting

Daniel Beltiţă, Mihai Nicolae (2015)

Studia Mathematica

We study some embeddings of suitably topologized spaces of vector-valued smooth functions on topological groups, where smoothness is defined via differentiability along continuous one-parameter subgroups. As an application, we investigate the canonical correspondences between the universal enveloping algebra, the invariant local operators, and the convolution algebra of distributions supported at the unit element of any finite-dimensional Lie group, when one passes from finite-dimensional Lie groups...

On volumes of arithmetic quotients of S O ( 1 , n )

Mikhail Belolipetsky (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of S O ( 1 , n ) . As a result we prove that for any even dimension  n there exists a unique compact arithmetic hyperbolic n -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We...

One-parameter subgroups and the B-C-H formula

Wojciech Wojtyński (1994)

Studia Mathematica

An algebraic scheme for Lie theory of topological groups with "large" families of one-parameter subgroups is proposed. Such groups are quotients of "𝔼ℝ-groups", i.e. topological groups equipped additionally with the continuous exterior binary operation of multiplication by real numbers, and generated by special ("exponential") elements. It is proved that under natural conditions on the topology of an 𝔼ℝ-group its group multiplication is described by the B-C-H formula in terms of the associated...

Currently displaying 241 – 260 of 275