Small solutions to linear congruences and Hecke equidistribution
This article studies components of Springer fibers for that are associated to closed orbits of on the flag variety of . These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of . We prove that if is a line bundle on the flag variety associated to a dominant weight, then the higher...
The study of controlled infinite-dimensional systems gives rise to many papers (see for instance [GXL], [GXB], [X]) but it is also motivated by various mathematical problems: partial differential equations ([BP]), sub-Riemannian geometry on infinite-dimensional manifolds ([Gr]), deformations in loop-spaces ([AP], [PS]). The first difference between finite and infinite-dimensional cases is that solutions in general do not exist (even locally) for every given control function. The aim of this paper...
Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. in the classical sense for all with , where is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
Let be a -step Carnot group. The first aim of this paper is to show an interplay between volume and -perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for -regular submanifolds of codimension one. We then give some applications of this result: slicing of functions, integral geometric formulae for volume and -perimeter and, making use of a suitable notion of convexity, called-convexity, we state a Cauchy type formula for -convex sets. Finally,...