On the classification of primitive ideals for complex classical Lie algebras, III
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing ,...
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant...
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra , including the explicit structure of singular vectors for both and one of its Lie subalgebras , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as -modules on the Schubert cells in the full flag manifold for .
It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group can be obtained via contraction from the discrete series of representations of .
We give a lower bound for the bottom of the differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.