Quantum Racah coefficients and subrepresentation semirings.
We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo,...
Soit l’ensemble des points d’un groupe algébrique semi-simple connexe de rang relatif un sur un corps local ultramétrique. Nous décrivons tous les sous-groupes discrets de type fini sans torsion de qui agissent proprement et cocompactement sur par multiplication à gauche et à droite. Nous montrons qu’après une petite déformation dans un tel sous-groupe agit encore librement, proprement discontinûment et cocompactement sur .
The affine group of a local field acts on the tree (the Bruhat-Tits building of ) with a fixed point in the space of ends . More generally, we define the affine group of any homogeneous tree as the group of all automorphisms of with a common fixed point in , and establish main asymptotic properties of random products in : (1) law of large numbers and central limit theorem; (2) convergence to and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary...
This is an extended version of a lecture given by the author at the summer school “Quasimodular forms and applications” held in Besse in June 2010.The main purpose of this work is to present Rankin-Cohen brackets through the theory of unitary representations of conformal Lie groups and explain recent results on their analogues for Lie groups of higher rank. Various identities verified by such covariant bi-differential operators will be explained by the associativity of a non-commutative product...