Smoothness and analycity for solutions of first order systems of partial differential equations on nilpotent Lie groups.
The study of controlled infinite-dimensional systems gives rise to many papers (see for instance [GXL], [GXB], [X]) but it is also motivated by various mathematical problems: partial differential equations ([BP]), sub-Riemannian geometry on infinite-dimensional manifolds ([Gr]), deformations in loop-spaces ([AP], [PS]). The first difference between finite and infinite-dimensional cases is that solutions in general do not exist (even locally) for every given control function. The aim of this paper...
Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. in the classical sense for all with , where is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
Let be a -step Carnot group. The first aim of this paper is to show an interplay between volume and -perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for -regular submanifolds of codimension one. We then give some applications of this result: slicing of functions, integral geometric formulae for volume and -perimeter and, making use of a suitable notion of convexity, called-convexity, we state a Cauchy type formula for -convex sets. Finally,...
We obtain some matrix elements of basis transformations in a representation space of the unimodular pseudo-orthogonal group. Using these elements, we derive some formulas for special functions.