Entropy of transformations of the unit interval
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
Nous démontrons l’unicité des solutions faibles pour une classe d’équations de transport dont les vitesses sont partiellement à variations bornées. Nous nous intéressons à des champs de vecteurs du typeavec une borne sur la divergence de chacun des champs . Ce modèle a été étudié récemment dans [LL] par C. Le Bris et P.-L. Lions avec une régularité ; nous montrons ici également que, dans le cas , le contrôle de la divergence totale du champ est suffisant. Notre méthode consiste à démontrer...
Two description forms of a linear fractional-order discrete system are considered. The first one is by a fractional-order difference equation, whereas the second by a fractional-order state-space equation. In relation to the two above-mentioned description forms, stability domains are evaluated. Several simulations of stable, marginally stable and unstable unit step responses of fractional-order systems due to different values of system parameters are presented.
We demonstrate that stochastic differential equations (SDEs) driven by fractional brownian motion with Hurst parameter H>½ have similar ergodic properties as SDEs driven by standard brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the...
The aim of this article is to give new refinements and sharpenings of Shafer's inequality involving the arctangent function. These are obtained by means of a change of variables, which makes the computations much easier than the classical approach.
When a real-valued function of one variable is approximated by its th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue -norms in cases where or are Henstock-Kurzweil integrable. When the only assumption is that is Henstock-Kurzweil integrable then a modified form of the th degree Taylor polynomial is used. When the only assumption is that then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.
In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.
The system of nonlinear differential equations is under consideration, where and are positive constants and and are positive continuous functions on . There are three types of different asymptotic behavior at infinity of positive solutions of (). The aim of this paper is to establish criteria for the existence of solutions of these three types by means of fixed point techniques. Special emphasis is placed on those solutions with both components decreasing to zero as , which can be...