Complex dynamics, value distributions, and potential theory.
Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.
On montre d’abord que la topologie fine est connexe et localement connexe, dans le cas d’un espace harmonique satisfaisant au groupe d’axiomes de Brelot (y compris l’axiome de domination). Un autre résultat principal (qu’on n’établit complètement ici que pour le cas classique d’un espace de Green) affirme que, pour toute mesure positive sur , soit à support compact, et pour toute base telle que , la mesure balayée a pour support fin la frontière fine de la réunion de toutes les composantes...
Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.
Étant donnés et un arbre dont chaque sommet est de valence au moins , on étudie la constante de Sobolev d’exposant de , c’est-à-dire la plus petite constante telle que pour tout on ait . Notre motivation vient de la recherche de graphes finis avec des petites constantes de Poincaré d’exposant , en vue d’obtenir des exemples de groupes qui ont la propriété de point fixe sur les espaces .
Given a function on with and , a procedure is exhibited for obtaining on a (finite) superharmonic majorant of the functionwhere is a certain (large) absolute constant. This leads to fairly constructive proofs of the two main multiplier theorems of Beurling and Malliavin. The principal tool used is a version of the following lemma going back almost surely to Beurling: suppose that , positive and bounded away from 0 on , is such that and denote, for any constant and each , the unique...