Globally invertible differentiable or holomorphic maps
The paper discusses some aspects of Gromov’s theory of gluing complex discs to Lagrangian manifolds.
An explicit formula is developed for Nevanlinna class functions whose behaviour at the boundary is “sufficiently rational” and is then used to deduce the uniqueness of the factorization of such inner functions. A generalization of a theorem of Frostman is given and the above results are then applied to the construction of good and/or irreducible inner functions on a polydisc.
We study the pluripolar hulls of analytic sets. In particular, we show that hulls of graphs of analytic functions can be multiple sheeted and sheets can be separated by a set of zero dimension.
We consider a convexity notion for complex spaces with respect to a holomorphic line bundle over . This definition has been introduced by Grauert and, when is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if separates each point of , then can be realized as a Riemann domain over the complex projective space...
By an open neighbourhood in ℂⁿ of an open subset Ω of ℝⁿ we mean an open subset Ω' of ℂⁿ such that ℝⁿ ∩ Ω' = Ω. A well known result of H. Grauert implies that any open subset of ℝⁿ admits a fundamental system of Stein open neighbourhoods in ℂⁿ. Another way to state this property is to say that each open subset of ℝⁿ is Stein. We shall prove a similar result in the subanalytic category: every subanalytic open subset in a paracompact real analytic manifold M admits a fundamental system of subanalytic...
Let be a coherent ideal sheaf on a complex manifold with zero set , and let be a plurisubharmonic function such that locally at , where is a tuple of holomorphic functions that defines . We give a meaning to the Monge-Ampère products for , and prove that the Lelong numbers of the currents at coincide with the so-called Segre numbers of at , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that satisfy a certain generalization...
This paper deals with the notion of Gröbner δ-base for some rings of linear differential operators by adapting the works of W. Trinks, A. Assi, M. Insa and F. Pauer. We compare this notion with the one of Gröbner base for such rings. As an application we give some results on finiteness and on flatness of finitely generated left modules over these rings.
We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.
Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe .