Intertwined mappings
We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic -correspondences. We define an intrinsic logarithmic pseudo-volume form for every pair consisting of a complex manifold and a normal crossing Weil divisor on , the positive part of which is reduced. We then prove that is generically non-degenerate when is projective and ...
Let a smooth projective family and a pseudo-effective line bundle on (i.e. with a non-negative curvature current ). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of (defined over the central fiber of the family ) to sections of . In this article we consider the following problem: to extend sections of . More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf , any section of extends to ; in other...
The aim of this paper is to prove the theorem on invariance of domain in an arbitrary o-minimal structure. We do not make use of the methods of algebraic topology and the proof is based merely on some basic facts about cells and cell decompositions.
We describe the notion of a weakly Lipschitz mapping on a stratification. We also distinguish a class of regularity conditions that are in some sense invariant under definable, locally Lipschitz and weakly bi-Lipschitz homeomorphisms. This class includes the Whitney (B) condition and the Verdier condition.
Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when...