H² spaces of generalized half-planes
We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- with convex, and weights of polynomial decrease in . We also briefly consider kernels with singularities on subvarieties...
We introduce an alternative proof of the existence of certain Ck barrier maps, with polynomial explosion of the derivatives, on weakly pseudoconvex domains in Cn. Barriers of this sort have been constructed very recently by J. Michel and M.-C. Shaw, and have various applications. In our paper, the adaptation of Hörmander's L2 techniques to suitable vector-valued functions allows us to give a very simple approach of the problem and to improve some aspects of the result of Michel and Shaw, regarding...
Let be a compact complex manifold with boundary and let be a high power of a hermitian holomorphic line bundle over When has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in in terms of the curvature of We extend Demailly’s inequalities to the case when has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the...
We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.
In 1945 the first author introduced the classes , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes , where: 1) , ; 2) Ω is the matrix domain consisting of those complex m...