Displaying 81 – 100 of 259

Showing per page

Henkin-Ramirez formulas with weight factors

B. Berndtsson, Mats Andersson (1982)

Annales de l'institut Fourier

We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- ϕ with ϕ convex, and weights of polynomial decrease in C n . We also briefly consider kernels with singularities on subvarieties...

Hilbert-valued forms and barriers on weakly pseudoconvex domains.

Vincent Thilliez (1998)

Publicacions Matemàtiques

We introduce an alternative proof of the existence of certain Ck barrier maps, with polynomial explosion of the derivatives, on weakly pseudoconvex domains in Cn. Barriers of this sort have been constructed very recently by J. Michel and M.-C. Shaw, and have various applications. In our paper, the adaptation of Hörmander's L2 techniques to suitable vector-valued functions allows us to give a very simple approach of the problem and to improve some aspects of the result of Michel and Shaw, regarding...

Holomorphic Morse Inequalities on Manifolds with Boundary

Robert Berman (2005)

Annales de l’institut Fourier

Let X be a compact complex manifold with boundary and let L k be a high power of a hermitian holomorphic line bundle over X . When X has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in L k , in terms of the curvature of L . We extend Demailly’s inequalities to the case when X has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the...

Integral formulas on projective space and the radon transform of Gindikin-Henkin-Polyakov.

Bo Berndtsson (1988)

Publicacions Matemàtiques

We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.

Integral representations for some weighted classes of functions holomorphic in matrix domains

M. M. Djrbashian, A. H. Karapetyan (1991)

Annales Polonici Mathematici

In 1945 the first author introduced the classes H p ( α ) , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for f H p ( α ) : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes L p ( Ω ; [ K ( w ) ] α d m ( w ) ) , where: 1) Ω = w = ( w , . . . , w n ) n : I m w > k = 2 n | w k | ² , K ( w ) = I m w - k = 2 n | w k | ² ; 2) Ω is the matrix domain consisting of those complex m...

Currently displaying 81 – 100 of 259