Displaying 361 – 380 of 1394

Showing per page

Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form.

Philippe Charpentier, Yves Dupain (2006)

Publicacions Matemàtiques

In this paper, we give precise isotropic and non-isotropic estimates for the Bergman and Szegö projections of a bounded pseudoconvex domain whose boundary points are all of finite type and with locally diagonalizable Levi form. Additional local results on estimates of invariant metrics are also given.

Estimates for the Bergman kernel and metric of convex domains in ℂⁿ

Nikolai Nikolov, Peter Pflug (2003)

Annales Polonici Mathematici

Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.

Examples of functions -extendable for each finite, but not -extendable

Wiesław Pawłucki (1998)

Banach Center Publications

In Example 1, we describe a subset X of the plane and a function on X which has a k -extension to the whole 2 for each finite, but has no -extension to 2 . In Example 2, we construct a similar example of a subanalytic subset of 5 ; much more sophisticated than the first one. The dimensions given here are smallest possible.

Explicit solution for Lamé and other PDE systems

Alexei Rodionov (2006)

Applications of Mathematics

We provide a general series form solution for second-order linear PDE system with constant coefficients and prove a convergence theorem. The equations of three dimensional elastic equilibrium are solved as an example. Another convergence theorem is proved for this particular system. We also consider a possibility to represent solutions in a finite form as partial sums of the series with terms depending on several complex variables.

Currently displaying 361 – 380 of 1394