Intégrales singulières holomorphes
A necessary and sufficient condition is obtained for a discrete multiplicity variety to be an interpolating variety for the space .
Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...
A sufficient condition is given to make a sequence of hyperplanes in the complex unit ball an interpolating sequence for , i.e. bounded holomorphic functions on the hyperplanes can be boundedly extended.
We prove in this paper that a given discrete variety V in Cn is an interpolating variety for a weight p if and only if V is a subset of the variety {ξ ∈ Cn: f1(ξ) = f2(ξ) = ... = fn(ξ) = 0} of m functions f1, ..., fm in the weighted space the sum of whose directional derivatives in absolute value is not less than ε exp(-Cp(ζ)), ζ ∈ V for some constants ε, C > 0. The necessary and sufficient conditions will be also given in terms of the Jacobian matrix of f1, ..., fm. As a corollary, we solve...
Let be a compact subset of an hyperconvex open set , forming with D a Runge pair and such that the extremal p.s.h. function ω(·,K,D) is continuous. Let H(D) and H(K) be the spaces of holomorphic functions respectively on D and K equipped with their usual topologies. The main result of this paper contains as a particular case the following statement: if T is a continuous linear map of H(K) into H(K) whose restriction to H(D) is continuous into H(D), then the restriction of T to is a continuous...
In questa nota, si studiano problemi di interpolazione per varietà discrete in spazi di funzioni olomorfe in coni. In particolare si mostra come sia possibile estendere il Principio Fondamentale di Ehrenpreis ad equazioni di convoluzione nella spazio , introdotto in [4] in connessione con problemi di fisica quantistica.