Holomorphic functions of fast growth on submanifolds of the domain
We construct a function f holomorphic in a balanced domain D in such that for every positive-dimensional subspace Π of , and for every p with 1 ≤ p < ∞, is not -integrable on Π ∩ D.
We construct a function f holomorphic in a balanced domain D in such that for every positive-dimensional subspace Π of , and for every p with 1 ≤ p < ∞, is not -integrable on Π ∩ D.
Let be a compact complex manifold with boundary and let be a high power of a hermitian holomorphic line bundle over When has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in in terms of the curvature of We extend Demailly’s inequalities to the case when has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the...
We study a natural system of second order differential operators on a symmetric Siegel domain that is invariant under the action of biholomorphic transformations. If is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.
MSC 2010: 30C10, 32A30, 30G35The algebra R(1; j; j2; j3), j4 = ¡1 of the fourth-R numbers, or in other words the algebra of the double-complex numbers C(1; j) and the corresponding functions, were studied in the papers of S. Dimiev and al. (see [1], [2], [3], [4]). The hyperbolic fourth-R numbers form other similar to C(1; j) algebra with zero divisors. In this note the square roots of hyperbolic fourth-R numbers and hyperbolic complex numbers are found. The quadratic equation with hyperbolic fourth-R...