Displaying 641 – 660 of 1395

Showing per page

Mixed-norm spaces and interpolation

Joaquín Ortega, Joan Fàbrega (1994)

Studia Mathematica

Let D be a bounded strictly pseudoconvex domain of n with smooth boundary. We consider the weighted mixed-norm spaces A δ , k p , q ( D ) of holomorphic functions with norm f p , q , δ , k = ( | α | k ʃ 0 r 0 ( ʃ D r | D α f | p d σ r ) q / p r δ q / p - 1 d r ) 1 / q . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces A δ , k p ( D ) and we give results about real and complex interpolation between them. We apply these results to prove that A δ , k p , q ( D ) is the intersection of a Besov space B s p , q ( D ) with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm...

Moebius-invariant algebras in balls

Walter Rudin (1983)

Annales de l'institut Fourier

It is proved that the Fréchet algebra C ( B ) has exactly three closed subalgebras Y which contain nonconstant functions and which are invariant, in the sense that f Ψ Y whenever f Y and Ψ is a biholomorphic map of the open unit ball B of C n onto B . One of these consists of the holomorphic functions in B , the second consists of those whose complex conjugates are holomorphic, and the third is C ( B ) .

Monge-Ampère measures and Poletsky-Stessin Hardy spaces on bounded hyperconvex domains

Sibel Şahin (2015)

Banach Center Publications

Poletsky-Stessin Hardy (PS-Hardy) spaces are the natural generalizations of classical Hardy spaces of the unit disc to general bounded, hyperconvex domains. On a bounded hyperconvex domain Ω, the PS-Hardy space H u p ( Ω ) is generated by a continuous, negative, plurisubharmonic exhaustion function u of the domain. Poletsky and Stessin considered the general properties of these spaces and mainly concentrated on the spaces H u p ( Ω ) where the Monge-Ampère measure ( d d c u ) has compact support for the associated exhaustion...

Multidimensional analogue of the van der Corput-Visser inequality and its application to the estimation of the Bohr radius

L. Aizenberg, E. Liflyand, A. Vidras (2003)

Annales Polonici Mathematici

We present a multidimensional analogue of an inequality by van der Corput-Visser concerning the coefficients of a real trigonometric polynomial. As an application, we obtain an improved estimate from below of the Bohr radius for the hypercone 𝓓₁ⁿ = {z ∈ ℂⁿ: |z₁|+. .. +|zₙ| < 1} when 3 ≤ n ≤ 10.

Currently displaying 641 – 660 of 1395