Previous Page 7

Displaying 121 – 136 of 136

Showing per page

Tempered solutions of 𝒟 -modules on complex curves and formal invariants

Giovanni Morando (2009)

Annales de l’institut Fourier

Let X be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of 𝒟 -modules on X induces a fully faithful functor on a subcategory of germs of formal holonomic 𝒟 -modules. Further, given a germ of holonomic 𝒟 -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .

The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms

Satoshi Koike, Laurentiu Paunescu (2009)

Annales de l’institut Fourier

Let A n be a set-germ at 0 n such that 0 A ¯ . We say that r S n - 1 is a direction of A at 0 n if there is a sequence of points { x i } A { 0 } tending to 0 n such that x i x i r as i . Let D ( A ) denote the set of all directions of A at 0 n .Let A , B n be subanalytic set-germs at 0 n such that 0 A ¯ B ¯ . We study the problem of whether the dimension of the common direction set, dim ( D ( A ) D ( B ) ) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic...

The Łojasiewicz exponent of subanalytic sets

Stanisław Spodzieja (2005)

Annales Polonici Mathematici

We prove that the infimum of the regular separation exponents of two subanalytic sets at a point is a rational number, and it is also a regular separation exponent of these sets. Moreover, we consider the problem of attainment of this exponent on analytic curves.

The theorem of the complement for a quasi subanalytic set

Abdelhafed Elkhadiri (2004)

Studia Mathematica

Let X ⊂ (ℝⁿ,0) be a germ of a set at the origin. We suppose X is described by a subalgebra, Cₙ(M), of the algebra of germs of C functions at the origin (see 2.1). This algebra is quasianalytic. We show that the germ X has almost all the properties of germs of semianalytic sets. Moreover, we study the projections of such germs and prove a version of Gabrielov’s theorem.

Théorème de préparation pour les fonctions logarithmico-exponentielles

Jean-Marie Lion, Jean-Philippe Rolin (1997)

Annales de l'institut Fourier

Nous donnons une preuve géométrique du théorème d’élimination des quantificateurs pour les fonctions logarithmico-exponentielles prouvé initialement par van den Dries, Macintyre et Marker. Notre démonstration n’utilise pas de Théorie des Modèles. Elle repose sur un théorème de préparation pour les fonctions sous-analytiques.

Théorèmes de finitude pour les variétés pfaffiennes

Robert Moussu, Claude Roche (1992)

Annales de l'institut Fourier

On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.

Topological invariants of analytic sets associated with Noetherian families

Aleksandra Nowel (2005)

Annales de l’institut Fourier

Let Ω n be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of Ω . Let Y ω be the germ at ω of the set f f - 1 ( 0 ) . Then there exist analytic functions v 1 , v 2 , ... , v s defined in a neighbourhood of Ω such that 1 2 χ ( lk ( ω , Y ω ) ) = i = 1 s sgn v i ( ω ) , for all ω Ω .

Volume and multiplicities of real analytic sets

Guillaume Valette (2005)

Annales Polonici Mathematici

We give criteria of finite determinacy for the volume and multiplicities. Given an analytic set described by {v = 0}, we prove that the log-analytic expansion of the volume of the intersection of the set and a "little ball" is determined by that of the set defined by the Taylor expansion of v up to a certain order if the mapping v has an isolated singularity at the origin. We also compare the cardinalities of finite fibers of projections restricted to such a set.

Whitney regularity and generic wings

V. Navarro Aznar, David J. A. Trotman (1981)

Annales de l'institut Fourier

Given adjacent subanalytic strata ( X , Y ) in R n verifying Kuo’s ratio test ( r ) (resp. Verdier’s ( w ) -regularity) we find an open dense subset of the codimension k C 1 submanifolds W (wings) containing Y such that ( X W , Y ) is generically Whitney ( b π ) -regular is exactly one more than the dimension...

Currently displaying 121 – 136 of 136

Previous Page 7