Displaying 281 – 300 of 403

Showing per page

Semi-monotone sets

Saugata Basu, Andrei Gabrielov, Nicolai Vorobjov (2013)

Journal of the European Mathematical Society

A coordinate cone in n is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of n , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...

Semi-simple Carrousels and the Monodromy

David B. Massey (2006)

Annales de l’institut Fourier

Let 𝒰 be an open neighborhood of the origin in n + 1 and let f : ( 𝒰 , 0 ) ( , 0 ) be complex analytic. Let z 0 be a generic linear form on n + 1 . If the relative polar curve Γ f , z 0 1 at the origin is irreducible and the intersection number ( Γ f , z 0 1 · V ( f ) ) 0 is prime, then there are severe restrictions on the possible degree n cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when ( Γ f , z 0 1 · V ( f ) ) 0 is not prime.

Siciak's extremal function in complex and real analysis

W. Pleśniak (2003)

Annales Polonici Mathematici

The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.

Solutions d'un système d'équations analytiques réelles et applications

Jean-Claude Tougeron (1976)

Annales de l'institut Fourier

On démontre que toute solution formelle y ( x ) d’un système d’équations analytiques réelles (resp. polynomiales réelles) f ( x , y ) = 0 , se relève en une solution C homotope à une solution analytique (resp. à une solution de Nash) aussi proche que l’on veut de y ( x ) pour la topologie de Krull. On utilise ce théorème pour démontrer l’algébricité (ou l’analyticité) de certains idéaux de R { x } (ou R [ [ x ] ] ), et aussi pour construire des déformations analytiques de germes d’ensembles analytiques en germes d’ensembles de Nash.

Solving power series equations. II. Change of ground field

Joseph Becker (1979)

Annales de l'institut Fourier

We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.

Spaces of polynomial functions of bounded degrees on an embedded manifold and their duals

Shuzo Izumi (2015)

Annales Polonici Mathematici

Let (U) denote the algebra of holomorphic functions on an open subset U ⊂ ℂⁿ and Z ⊂ (U) its finite-dimensional vector subspace. By the theory of least spaces of de Boor and Ron, there exists a projection b from the local ring n , b onto the space Z b of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal and b induces the structure of an Artinian algebra on Z b . In particular, this holds at points where the kth jets of elements of Z form a vector bundle for each k ∈ ℕ. For an embedded...

Spectral geometry of semi-algebraic sets

Mikhael Gromov (1992)

Annales de l'institut Fourier

The spectrum of the Laplace operator on algebraic and semialgebraic subsets A in R N is studied and the number of small eigenvalues is estimated by the degree of A .

Stokes' formula for stratified forms

Guillaume Valette (2015)

Annales Polonici Mathematici

A stratified form is a collection of forms defined on the strata of a stratification of a subanalytic set and satisfying a continuity property when we pass from one stratum to another. We prove that these forms satisfy Stokes' formula on subanalytic singular simplices.

Stratified Whitney jets and tempered ultradistributions on the subanalytic site

N. Honda, G. Morando (2011)

Bulletin de la Société Mathématique de France

In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold X . Then, we define stratified ultradistributions of Beurling and Roumieu type on X . In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if X is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to X . Second, the tempered-stratified...

Currently displaying 281 – 300 of 403