Displaying 341 – 360 of 403

Showing per page

The Łojasiewicz exponent of c-holomorphic mappings

Maciej P. Denkowski (2005)

Annales Polonici Mathematici

The aim of this paper is to study the Łojasiewicz exponent of c-holomorphic mappings. After introducing an order of flatness for c-holomorphic mappings we give an estimate of the Łojasiewicz exponent in the case of isolated zero, which is a generalization of the one given by Płoski and earlier by Chądzyński for two variables.

The Łojasiewicz exponent of subanalytic sets

Stanisław Spodzieja (2005)

Annales Polonici Mathematici

We prove that the infimum of the regular separation exponents of two subanalytic sets at a point is a rational number, and it is also a regular separation exponent of these sets. Moreover, we consider the problem of attainment of this exponent on analytic curves.

The membership problem for polynomial ideals in terms of residue currents

Mats Andersson (2006)

Annales de l’institut Fourier

We find a relation between the vanishing of a globally defined residue current on n and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.

The theorem of the complement for a quasi subanalytic set

Abdelhafed Elkhadiri (2004)

Studia Mathematica

Let X ⊂ (ℝⁿ,0) be a germ of a set at the origin. We suppose X is described by a subalgebra, Cₙ(M), of the algebra of germs of C functions at the origin (see 2.1). This algebra is quasianalytic. We show that the germ X has almost all the properties of germs of semianalytic sets. Moreover, we study the projections of such germs and prove a version of Gabrielov’s theorem.

Théorème de division et stabilité en géométrie analytique locale

André Galligo (1979)

Annales de l'institut Fourier

À l’aide d’un théorème de division de séries entières convergentes avec estimation des normes sur un système fondamental de polydisques, on démontre un théorème de “passage du formel au convergent”. Ceci nous permet d’étudier les morphismes stables et plats entre germes d’espaces analytiques singuliers.

Théorème de préparation pour les fonctions logarithmico-exponentielles

Jean-Marie Lion, Jean-Philippe Rolin (1997)

Annales de l'institut Fourier

Nous donnons une preuve géométrique du théorème d’élimination des quantificateurs pour les fonctions logarithmico-exponentielles prouvé initialement par van den Dries, Macintyre et Marker. Notre démonstration n’utilise pas de Théorie des Modèles. Elle repose sur un théorème de préparation pour les fonctions sous-analytiques.

Théorèmes de finitude pour les variétés pfaffiennes

Robert Moussu, Claude Roche (1992)

Annales de l'institut Fourier

On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.

Théorèmes de préparation Gevrey et étude de certaines applications formelles

Augustin Mouze (2003)

Annales Polonici Mathematici

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from s to p without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...

Topological invariants of analytic sets associated with Noetherian families

Aleksandra Nowel (2005)

Annales de l’institut Fourier

Let Ω n be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of Ω . Let Y ω be the germ at ω of the set f f - 1 ( 0 ) . Then there exist analytic functions v 1 , v 2 , ... , v s defined in a neighbourhood of Ω such that 1 2 χ ( lk ( ω , Y ω ) ) = i = 1 s sgn v i ( ω ) , for all ω Ω .

Currently displaying 341 – 360 of 403