-modules arithmétiques. II: Descente par Frobenius
Dans un article sur la transformation de Radon-Penrose, A. D’Agnolo et P. Schapira ont montré qu’au-dessus d’une variété complexe de dimension , tout - module localement libre de rang est de la forme pour un fibré inversible sur . Ce résultat est faux en dimension , et le but de ce travail est de déterminer la structure des - modules micro-localement libres de rang dans ce cas. Un des principaux résultat est la description des -modules micro-localement libres de rang un en termes...
The -weighted Besov spaces of holomorphic functions on the unit ball in are introduced as follows. Given a function of regular variation and , a function holomorphic in is said to belong to the Besov space if where is the volume measure on and stands for the fractional derivative of . The holomorphic Besov space is described in the terms of the corresponding space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also,...