Displaying 281 – 300 of 403

Showing per page

Pseudo-real principal Higgs bundles on compact Kähler manifolds

Indranil Biswas, Oscar García-Prada, Jacques Hurtubise (2014)

Annales de l’institut Fourier

Let X be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let G be a connected complex reductive affine algebraic group equipped with a real form σ G . We define pseudo-real principal G -bundles on X . These are generalizations of real algebraic principal G -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal G -bundles. Their relationships with the usual stable, semistable...

Real Kodaira surfaces.

Paola Frediani (2004)

Collectanea Mathematica

In this paper we give the topological classification of real primary Kodaira surfaces and we describe in detail the structure of the corresponding moduli space. Moreover, we use the notion of the orbifold fundamental group of a real variety, which was also the main tool in the classification of real hyperelliptic surfaces achieved in [10]. Our first result is that if (S,sygma) is a real primary Kodaira surface, then the differentiable tupe of the pair (S,sygma) is completely determined by the orbifold...

Regular holomorphic images of balls

John Erik Fornaess, Edgar Lee Stout (1982)

Annales de l'institut Fourier

Every n -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in C n under a finite holomorphic map that is locally biholomorphic.

Remarks on the balanced metric on Hartogs triangles with integral exponent

Qiannan Zhang, Huan Yang (2023)

Czechoslovak Mathematical Journal

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ + , i.e., Ω n ( γ ) = { z = ( z 1 , , z n ) n : | z 1 | 1 / γ < | z 2 | < < | z n | < 1 } equipped with a natural Kähler form ω g ( μ ) : = 1 2 ( i / π ) ¯ Φ n with Φ n ( z ) = - μ 1 ln ( | z 2 | 2 γ - | z 1 | 2 ) - i = 2 n - 1 μ i ln ( | z i + 1 | 2 - | z i | 2 ) - μ n ln ( 1 - | z n | 2 ) , where μ = ( μ 1 , , μ n ) , μ i > 0 , depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for ( Ω n ( γ ) , g ( μ ) ) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γ μ 1 is an integer, μ i are integers such that μ i 2 for all i = 2 , ... , n - 1 , and μ n > 1 . Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = = μ n = 2 λ , where λ is a nonzero...

Remarks on the relative intrinsic pseudo-distance and hyperbolic imbeddability

Nguyen Doan Tuan, Pham Viet Duc (2005)

Annales Polonici Mathematici

We prove the invariance of hyperbolic imbeddability under holomorphic fiber bundles with compact hyperbolic fibers. Moreover, we show an example concerning the relation between the Kobayashi relative intrinsic pseudo-distance of a holomorphic fiber bundle and the one in its base.

Représentations linéaires des groupes kählériens et de leurs analogues projectifs

Fréderic Campana, Benoît Claudon, Philippe Eyssidieux (2014)

Journal de l’École polytechnique — Mathématiques

Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si G GL n ( ) est l’image d’une représentation linéaire d’un groupe kählérien π 1 ( X ) , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse X ' .Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe fondamental d’une variété kählérienne compacte est aussi celui d’une variété...

Currently displaying 281 – 300 of 403