Potential theory and several complex variables
Let be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let be a connected complex reductive affine algebraic group equipped with a real form . We define pseudo-real principal -bundles on . These are generalizations of real algebraic principal -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal -bundles. Their relationships with the usual stable, semistable...
In this paper we give the topological classification of real primary Kodaira surfaces and we describe in detail the structure of the corresponding moduli space. Moreover, we use the notion of the orbifold fundamental group of a real variety, which was also the main tool in the classification of real hyperelliptic surfaces achieved in [10]. Our first result is that if (S,sygma) is a real primary Kodaira surface, then the differentiable tupe of the pair (S,sygma) is completely determined by the orbifold...
Every -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in under a finite holomorphic map that is locally biholomorphic.
Abstract. The characterization of hyperbolic embeddability of relatively compact subspaces of a complex space in terms of extension of holomorphic maps from the punctured disc and of limit complex lines is given.
In this paper we study the balanced metrics on some Hartogs triangles of exponent , i.e., equipped with a natural Kähler form with where , , depending on parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for and we prove that is balanced if and only if and is an integer, are integers such that for all , and . Second, we prove that is Kähler-Einstein if and only if , where is a nonzero...
We prove the invariance of hyperbolic imbeddability under holomorphic fiber bundles with compact hyperbolic fibers. Moreover, we show an example concerning the relation between the Kobayashi relative intrinsic pseudo-distance of a holomorphic fiber bundle and the one in its base.
Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si est l’image d’une représentation linéaire d’un groupe kählérien , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse .Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe fondamental d’une variété kählérienne compacte est aussi celui d’une variété...