Displaying 341 – 360 of 403

Showing per page

The Kähler Ricci flow on Fano manifolds (I)

Xiuxiong Chen, Bing Wang (2012)

Journal of the European Mathematical Society

We study the evolution of pluri-anticanonical line bundles K M - ν along the Kähler Ricci flow on a Fano manifold M . Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of M . For example, the Kähler Ricci flow on M converges when M is a Fano surface satisfying c 1 2 ( M ) = 1 or c 1 2 ( M ) = 3 . Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism groups....

Three-manifolds and Kähler groups

D. Kotschick (2012)

Annales de l’institut Fourier

We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .

Currently displaying 341 – 360 of 403