Stable triples, equivariant bundles and dimensional reduction.
Dans cet article, je montre qu’un domaine est hyperbolique pour la pseudodistance intégrée de Carathéodory (c’est-à-dire que est une distance sur ) si et seulement si la pseudodistance de Carathéodory vérifie la propriété de séparation faible suivante : tout point de possède un voisinage tel que, pour tout point de , , . Je construis aussi un exemple d’un domaine -hyperbolique et non -hyperbolique.
Soit une surface complexe réglée. Nous introduisons des métriques de volume fini sur dons les singularités sont paramétrisées par une structure parabolique sur le fibré . Nous généralisons alors un résultat de Burns-deBartolomeis et Le Brun, en montrant que l’existence de métriques kählériennes singulières, de volume fini, à courbure scalaire constante négative ou nulle sur est équivalente à une condition de polystabilité parabolique sur ; de plus ces métriques proviennent toutes de quotients...