Connexité abélienne des variétés kählériennes compactes
We study restrictions of ω-plurisubharmonic functions to a smooth hypersurface S in a compact Kähler manifold X. The result obtained and the characterization of convergence in capacity due to S. Dinew and P. H. Hiep [to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.] are used to study convergence in capacity on S.
The main theorem of the paper provides a way to produce examples such that the movable cone of an ample divisor does not coincide with the movable cone of its ambient variety.
We study compact Kähler manifolds admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of . We extend Calabi’s theorem on the structure of compact Kähler...
We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.
On étudie la dimension moyenne de l’espace de courbes -Brody à valeurs dans deux surfaces complexes : d’abord pour des surfaces de Hopf, et ensuite pour privé d’une droite. On montre dans le premier cas que la dimension moyenne est nulle via une borne sur la croissance des fonctions holomorphes faisant apparaître le lemme de la dérivée logarithmique. Pour montrer la positivité dans le deuxième exemple, on relève de la droite à son complémentaire un espace de courbes de Brody de dimension moyenne...