Displaying 121 – 140 of 785

Showing per page

Cycle exceptionnel de l’éclatement d’un idéal définissant l’origine de C n et applications

Alain Hénaut (1987)

Annales de l'institut Fourier

Soit I un idéal de C { z 1 , ... , z n } définissant l’origine de C n . On donne une méthode explicite pour déterminer, après un choix convenable des générateurs de I = ( f 1 , ... , f n + p ) , le cycle de P n + p - 1 sous-jacent à la fibre exceptionnelle de l’éclatement de C n relativement à I . On étudie également l’éclatement d’une famille équimultiple d’idéaux ponctuels paramétrée par un germe d’espace analytique complexe réduit.

Cycles évanescents d’une fonction de Liouville de type f 1 λ 1 . . . f p λ p

Emmanuel Paul (1995)

Annales de l'institut Fourier

On construit un transport transverse aux fibres d’une fonction multivaluée de type f 1 λ 1 ... f p λ p ( λ i complexes), à l’origine de 2 . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes C difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.

Decomposition into special cubes and its applications to quasi-subanalytic geometry

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

The main purpose of this paper is to present a natural method of decomposition into special cubes and to demonstrate how it makes it possible to efficiently achieve many well-known fundamental results from quasianalytic geometry as, for instance, Gabrielov's complement theorem, o-minimality or quasianalytic cell decomposition.

Decompositions of hypersurface singularities oftype J k , 0

Piotr Jaworski (1994)

Annales Polonici Mathematici

Applications of singularity theory give rise to many questions concerning deformations of singularities. Unfortunately, satisfactory answers are known only for simple singularities and partially for unimodal ones. The aim of this paper is to give some insight into decompositions of multi-modal singularities with unimodal leading part. We investigate the J k , 0 singularities which have modality k - 1 but the quasihomogeneous part of their normal form only depends on one modulus.

Deformation of polar methods

David B. Massey, Dirk Siersma (1992)

Annales de l'institut Fourier

We study deformations of hypersurfaces with one-dimensional singular loci by two different methods. The first method is by using the Le numbers of a hypersurfaces singularity — this falls under the general heading of a “polar” method. The second method is by studying the number of certain special types of singularities which occur in generic deformations of the original hypersurface. We compare and contrast these two methods, and provide a large number of examples.

Currently displaying 121 – 140 of 785