Displaying 21 – 40 of 47

Showing per page

A priori estimates for weak solutions of complex Monge-Ampère equations

Slimane Benelkourchi, Vincent Guedj, Ahmed Zeriahi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree ( 1 , 1 ) which is nonnegative and big. We study the classes χ ( X , ω ) of ω -plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ ( X , ω ) . This is done by establishing...

A pure smoothness condition for Radó’s theorem for α -analytic functions

Abtin Daghighi, Frank Wikström (2016)

Czechoslovak Mathematical Journal

Let Ω n be a bounded, simply connected -convex domain. Let α + n and let f be a function on Ω which is separately C 2 α j - 1 -smooth with respect to z j (by which we mean jointly C 2 α j - 1 -smooth with respect to Re z j , Im z j ). If f is α -analytic on Ω f - 1 ( 0 ) , then f is α -analytic on Ω . The result is well-known for the case α i = 1 , 1 i n , even when f a priori is only known to be continuous.

A radial Phragmén-Lindelöf estimate for plurisubharmonic functions on algebraic varieties

Rüdiger Braun, Reinhold Meise, B. Taylor (1999)

Annales Polonici Mathematici

For complex algebraic varieties V, the strong radial Phragmén-Lindelöf condition (SRPL) is defined. It means that a radial analogue of the classical Phragmén-Lindelöf Theorem holds on V. Here we derive a sufficient condition for V to satisfy (SRPL), which is formulated in terms of local hyperbolicity at infinite points of V. The latter condition as well as the extension of local hyperbolicity to varieties of arbitrary codimension are introduced here for the first time. The proof of the main result...

Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques

Jean-Jacques Loeb (1985)

Annales de l'institut Fourier

Soit G C un groupe de Lie complexe et G R une forme réelle fermée de G C . Un couple ( G C , G R ) est dit pseudo-convexe, s’il existe sur G C une fonction régulière, strictement p.s.h., invariante par l’action de G R et d’exhaustion sur G C / G R . On dit que G R est à spectre imaginaire pur, si pour tout X de Lie ( G R ) , les valeurs propres de ad X sont imaginaires pures. Pour G C à radical simplement connexe, cette dernière propriété équivaut à la pseudo-convexité de ( G C , G R ) . Pour ( G C , G R ) pseudo-convexe et sous une hypothèse de sous-groupe discret,...

Ahlfors’ currents in higher dimension

Henry de Thélin (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a nondegenerate holomorphic map f : V X where ( X , ω ) is a compact Hermitian manifold of dimension larger than or equal to k and V is an open connected complex manifold of dimension k . In this article we give criteria which permit to construct Ahlfors’ currents in X .

Currently displaying 21 – 40 of 47