Displaying 21 – 40 of 79

Showing per page

Infinitely many solutions of a second-order p -Laplacian problem with impulsive condition

Libo Wang, Weigao Ge, Minghe Pei (2010)

Applications of Mathematics

Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a p -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the p -Laplacian impulsive problem.

Initial boundary value problem for the mKdV equation on a finite interval

Anne Boutet de Monvel, Dmitry Shepelsky (2004)

Annales de l’institut Fourier

We analyse an initial-boundary value problem for the mKdV equation on a finite interval ( 0 , L ) by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex k -plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at t = 0 and x = 0 , L . We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral...

Input-output systems in Biology and Chemistry and a class of mathematical models describing them

Erich Bohl, Ivo Marek (2005)

Applications of Mathematics

Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators...

Integrability and limit cycles for Abel equations

Jean-Pierre Françoise (2011)

Banach Center Publications

Abel equations are among the most natural ordinary differential equations which have a Godbillon-Vey sequence of length 4. We show that the associated Poincaré mapping can be expressed by iterated integrals with three functions which are solutions of a system of partial differential equations.

Integrability of a linear center perturbed by a fifth degree homogeneous polynomial.

Javier Chavarriga, Jaume Giné (1997)

Publicacions Matemàtiques

In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.

Integrability of a linear center perturbed by a fourth degree homogeneous polynomial.

Javier Chavarriga, Jaume Giné (1996)

Publicacions Matemàtiques

In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.

Integrable system of the heat kernel associated with logarithmic potentials

Kazuhiko Aomoto (2000)

Annales Polonici Mathematici

The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.

Integrable systems in the plane with center type linear part

Javier Chavarriga (1994)

Applicationes Mathematicae

We study integrability of two-dimensional autonomous systems in the plane with center type linear part. For quadratic and homogeneous cubic systems we give a simple characterization for integrable cases, and we find explicitly all first integrals for these cases. Finally, two large integrable system classes are determined in the most general nonhomogeneous cases.

Currently displaying 21 – 40 of 79