Periodic solutions and exponential stability for shunting inhibitory cellular neural networks with continuously distributed delays.
We investigate the existence of infinitely many periodic solutions for the -Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super- growth and asymptotic- growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case .
We consider first order periodic differential inclusions in . The presence of a subdifferential term incorporates in our framework differential variational inequalities in . We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.
By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for th order delay differential equations with damping terms . Some new results on the existence of periodic solutions of the investigated equation are obtained.
In this paper, we consider periodic solutions for a class of nonlinear evolution equations with non-instantaneous impulses on Banach spaces. By constructing a Poincaré operator, which is a composition of the maps and using the techniques of a priori estimate, we avoid assuming that periodic solution is bounded like in [1-4] and try to present new sufficient conditions on the existence of periodic mild solutions for such problems by utilizing semigroup theory and Leray-Schauder's fixed point theorem....
In this paper we prove the existence of periodic solutions for a class of nonlinear evolution inclusions defined in an evolution triple of spaces and driven by a demicontinuous pseudomonotone coercive operator and an upper semicontinuous multivalued perturbation defined on with values in . Our proof is based on a known result about the surjectivity of the sum of two operators of monotone type and on the fact that the property of pseudomonotonicity is lifted to the Nemitsky operator, which we...
We consider a quasilinear vector differential equation with maximal monotone term and periodic boundary conditions. Approximating the maximal monotone operator with its Yosida approximation, we introduce an auxiliary problem which we solve using techniques from the theory of nonlinear monotone operators and the Leray-Schauder principle. To obtain a solution of the original problem we pass to the limit as the parameter λ > 0 of the Yosida approximation tends to zero.
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.