Displaying 201 – 220 of 483

Showing per page

Morales-Ramis Theorems via Malgrange pseudogroup

Guy Casale (2009)

Annales de l’institut Fourier

In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

Multiplicity of a foliation on projective spaces along an integral curve.

Julio García (1993)

Revista Matemática de la Universidad Complutense de Madrid

We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.

Multiscale homogenization of nonlinear hyperbolic-parabolic equations

Abdelhakim Dehamnia, Hamid Haddadou (2023)

Applications of Mathematics

The main purpose of the present paper is to study the asymptotic behavior (when ε 0 ) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.

Multisummability and ordinary meromorphic differential equations

Boele Braaksma (2012)

Banach Center Publications

In this expository paper we consider various approaches to multisummability. We apply it to nonlinear ODE's and give a somewhat modified proof of multisummability of formal solutions of ODE's with levels 1 and 2 via Écalle's method involving convolution equations.

Non-commutative Hodge structures

Claude Sabbah (2011)

Annales de l’institut Fourier

This article gives a survey of recent results on a generalization of the notion of a Hodge structure. The main example is related to the Fourier-Laplace transform of a variation of polarizable Hodge structure on the punctured affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a smooth quasi-projective variety. Variations of non-commutative Hodge structures often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt* geometry.

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi, Laurent Stolovitch (2010)

Annales scientifiques de l'École Normale Supérieure

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there...

Currently displaying 201 – 220 of 483