Displaying 41 – 60 of 113

Showing per page

Existence of weak solutions to doubly degenerate diffusion equations

Aleš Matas, Jochen Merker (2012)

Applications of Mathematics

We prove existence of weak solutions to doubly degenerate diffusion equations u ˙ = Δ p u m - 1 + f ( m , p 2 ) by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains Ω n with Dirichlet or Neumann boundary conditions. The function f can be an inhomogeneity or a nonlinearity involving terms of the form f ( u ) or div ( F ( u ) ) . In the appendix, an introduction to weak differentiability...

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

Geometric optics and instability for NLS and Davey-Stewartson models

Rémi Carles, Eric Dumas, Christof Sparber (2012)

Journal of the European Mathematical Society

We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrödinger equations with Gauge invariant power-law nonlinearities and nonlocal perturbations. The model includes the Davey-Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variants. Our analysis reveals a new localization phenomenon for nonlocal perturbations in the high frequency regime and allows us to infer strong instability results on the Cauchy problem in negative order Sobolev...

Global and exponential attractors for a Caginalp type phase-field problem

Brice Bangola (2013)

Open Mathematics

We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.

Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems

Yong-Fu Yang (2012)

Applications of Mathematics

In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant { ( t , x ) : t 0 , x 0 } is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a C 1 solution and its L 1 stability with certain small initial and boundary data.

Global existence and energy decay of solutions to a Bresse system with delay terms

Abbes Benaissa, Mostefa Miloudi, Mokhtar Mokhtari (2015)

Commentationes Mathematicae Universitatis Carolinae

We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.

Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping

Abderrahmane Zaraï, Nasser-eddine Tatar (2010)

Archivum Mathematicum

A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].

Global existence of smooth solutions for the compressible viscous fluid flow with radiation in 3

Hyejong O, Hakho Hong, Jongsung Kim (2023)

Applications of Mathematics

This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in [ 0 , ) , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.

Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics

Wen Zhang, Jianwen Zhang (2012)

Applications of Mathematics

In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Global solution to the Cauchy problem of nonlinear thermodiffusion in a solid body

Arkadiusz Szymaniec (2010)

Applicationes Mathematicae

We consider the initial-value problem for a nonlinear hyperbolic-parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove global (in time) existence and uniqueness of the solution to the initial-value problem for this nonlinear system. The global existence is proved using time decay estimates for the solution of the associated linearized problem. Next, we prove an energy estimate...

Global solutions of quasilinear systems of Klein–Gordon equations in 3D

Alexandru D. Ionescu, Benoît Pausader (2014)

Journal of the European Mathematical Society

We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.

Initial boundary value problem for generalized Zakharov equations

Shujun You, Boling Guo, Xiaoqi Ning (2012)

Applications of Mathematics

This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in ( 2 + 1 ) dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.

Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium

Abdelghani El Mousaoui, Pierre Argoul, Mohammed El Rhabi, Abdelilah Hakim (2021)

Applications of Mathematics

This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that...

Kinetic equations with Maxwell boundary conditions

Stéphane Mischler (2010)

Annales scientifiques de l'École Normale Supérieure

We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann,...

Currently displaying 41 – 60 of 113