Previous Page 10

Displaying 181 – 195 of 195

Showing per page

Boundedness of the solution of the third problem for the Laplace equation

Dagmar Medková (2005)

Czechoslovak Mathematical Journal

A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.

Bounds and estimates on the effective properties for nonlinear composites

Peter Wall (2000)

Applications of Mathematics

In this paper we derive lower bounds and upper bounds on the effective properties for nonlinear heterogeneous systems. The key result to obtain these bounds is to derive a variational principle, which generalizes the variational principle by P. Ponte Castaneda from 1992. In general, when the Ponte Castaneda variational principle is used one only gets either a lower or an upper bound depending on the growth conditions. In this paper we overcome this problem by using our new variational principle...

Bounds and numerical results for homogenized degenerated p -Poisson equations

Johan Byström, Jonas Engström, Peter Wall (2004)

Applications of Mathematics

In this paper we derive upper and lower bounds on the homogenized energy density functional corresponding to degenerated p -Poisson equations. Moreover, we give some non-trivial examples where the bounds are tight and thus can be used as good approximations of the homogenized properties. We even present some cases where the bounds coincide and also compare them with some numerical results.

Bounds for KdV and the 1-d cubic NLS equation in rough function spaces

Herbert Koch (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time H s bounds in terms of the H s size of the initial data for s - 1 4 (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in H - 1 (joint work with T. Buckmaster [2]).

Breakdown in finite time of solutions to a one-dimensional wave equation.

Mokhtar Kirane, Salim A. Messaoudi (2000)

Revista Matemática Complutense

We consider a special type of a one-dimensional quasilinear wave equation wtt - phi (wt / wx) wxx = 0 in a bounded domain with Dirichlet boundary conditions and show that classical solutions blow up in finite time even for small initial data in some norm.

Breathers for nonlinear wave equations

Michael W. Smiley (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The semilinear differential equation (1), (2), (3), in × Ω with Ω N , (a nonlinear wave equation) is studied. In particular for Ω = 3 , the existence is shown of a weak solution u ( t , x ) , periodic with period T , non-constant with respect to t , and radially symmetric in the spatial variables, that is of the form u ( t , x ) = ν ( t , | x | ) . The proof is based on a distributional interpretation for a linear equation corresponding to the given problem, on the Paley-Wiener criterion for the Laplace Transform, and on the alternative method of...

Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents

Manuel del Pino, Fethi Mahmudi, Monica Musso (2014)

Journal of the European Mathematical Society

Let Ω be a bounded domain in n with smooth boundary Ω . We consider the equation d 2 Δ u - u + u n - k + 2 n - k - 2 = 0 in Ω , under zero Neumann boundary conditions, where Ω is open, smooth and bounded and d is a small positive parameter. We assume that there is a k -dimensional closed, embedded minimal submanifold K of Ω , which is non-degenerate, and certain weighted average of sectional curvatures of Ω is positive along K . Then we prove the existence of a sequence d = d j 0 and a positive solution u d such that d 2 | u d | 2 S δ K as d 0 in the sense of measures, where δ K ...

Buckling of anisotropic shells. II

Anukul De (1983)

Aplikace matematiky

The object of this paper is to find the solution of the differential equation of the buckling problem of anisotropic cylindrical shells with shear load in case of torsion of a long tube. The critical values of the shear load and the total torque are also found. The corresponding results for the isotropic case are deduced as a special case.

Currently displaying 181 – 195 of 195

Previous Page 10