Resonances generated by analytic singularities on the density of states measure for perturbed periodic Schrödinger operators.
Nous démontrons dans cet article que le système MHD tridimensionnel à densité et viscosité variables est localement bien posé lorsque pour et la densité initiale est proche d’une constante strictement positive. Nous démontrons également un résultat d’existence et d’unicité dans l’espace de Sobolev pour sans aucune condition de petitesse sur la densité.
Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...
Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...