Displaying 261 – 280 of 503

Showing per page

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). We consider all three cases.

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). ...

Spectral element discretization of the heat equation with variable diffusion coefficient

Y. Daikh, W. Chikouche (2016)

Commentationes Mathematicae Universitatis Carolinae

We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.

Spectral methods for singular perturbation problems

Wilhelm Heinrichs (1994)

Applications of Mathematics

We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.

Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri (2011)

Annales de l’institut Fourier

We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...

Spectre négatif d'un opérateur elliptique avec des conditions au bord de Robin.

Yuri V. Egorov, Mohammed El Aidi (2001)

Publicacions Matemàtiques

In this article we discuss some estimates of the number of the negative eigenvalues and their moments of energy for an elliptic operator L = L0 - V(x) defined in Hm(R+n) with the Robin boundary conditions containing a potential W(x), in terms of some integrals of V and W.

Speed-up of reaction-diffusion fronts by a line of fast diffusion

Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, Luca Rossi (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction...

Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials

Jaeyoung Byeon, Zhi-Qiang Wang (2006)

Journal of the European Mathematical Society

For singularly perturbed Schrödinger equations with decaying potentials at infinity we construct semiclassical states of a critical frequency concentrating on spheres near zeroes of the potentials. The results generalize some recent work of Ambrosetti–Malchiodi–Ni [3] which gives solutions concentrating on spheres where the potential is positive. The solutions we obtain exhibit different behaviors from the ones given in [3].

Spreading and vanishing in nonlinear diffusion problems with free boundaries

Yihong Du, Bendong Lou (2015)

Journal of the European Mathematical Society

We study nonlinear diffusion problems of the form u t = u x x + f ( u ) with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundary representing the expanding front. For special f ( u ) of the Fisher-KPP type, the problem was investigated by Du and Lin [DL]. Here we consider much more general nonlinear terms. For any f ( u ) which is C 1 and satisfies f ( 0 ) = 0 , we show that the omega limit set ω ( u ) of every bounded positive solution is determined by a stationary solution....

Stabilisation d’une poutre. Étude du taux optimal de décroissance de l’énergie élastique

Francis Conrad, Fatima-Zahra Saouri (2002)

ESAIM: Control, Optimisation and Calculus of Variations

On se propose d’étudier la stabilité d’une poutre flexible homogène, encastrée à une extrémité. À l’autre extrémité est attachée une masse ponctuelle où on applique un moment proportionnel à la vitesse de déplacement angulaire. On montre par une analyse spectrale que le taux optimal de décroissance de l’énergie est déterminé par l’abscisse spectrale du générateur infinitésimal du semi-groupe associé au problème.

Stabilisation d'une poutre. Étude du taux optimal de décroissance de l'énergie élastique

Francis Conrad, Fatima-Zahra Saouri (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the stability of a flexible beam clamped at one end. A mass is attached at the other end, where a control moment is applied. The boundary control is proportional to the angular velocity at the end. By spectral analysis, we prove that the optimal decay rate of the energy is given by the spectrum of the generator of the semigroup associated to the system.

Stabilisation exponentielle d’une équation des poutres d’Euler-Bernoulli à coefficients variables

My Driss Aouragh, Naji Yebari (2009)

Annales mathématiques Blaise Pascal

Dans ce travail, nous étudions la propriété de base de Riesz et la stabilisation exponentielle pour une équation des poutres d’Euler-Bernoulli à coefficients variables sous un contrôle frontière linéaire dépendant de la position (resp. l’angle de rotation), de la vitesse et de la vitesse de rotation dans le contrôle force (resp. moment). Nous montrons qu’il existe une suite de fonctions propres généralisées qui forme une base de Riesz de l’espace d’énergie considéré, et qu’il y a stabilité exponentielle...

Currently displaying 261 – 280 of 503