On the Hölder Continuity of Bounded Weak Solutions of Quasilinear Parabolic Systems.
In this paper we study the behavior of solutions of the boundary value problem for the Poisson equation in a partially perforated domain with arbitrary density of cavities and mixed type conditions on their boundary. The corresponding spectral problem is also considered. A short communication of similar results can be found in [1].
We consider the spatial behavior of the velocity field of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We consider the 3D quantum BBGKY hierarchy which corresponds to the -particle Schrödinger equation. We assume the pair interaction is . For the interaction parameter , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for in [28]. This allows, in the case , for the application of the Klainerman–Machedon uniqueness theorem...