Displaying 341 – 360 of 591

Showing per page

On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion

J.A. Sherratt (2010)

Mathematical Modelling of Natural Phenomena

Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front...

On the G -convergence of Morrey operators

Maria Rosaria Formica, Carlo Sbordone (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Following Morrey [14] we associate to any measurable symmetric 2 × 2 matrix valued function A x such that ξ 2 K A x ξ , ξ K ξ 2 a.e. x Ω , ξ R 2 , Ω R 2 ...

On the global existence for the axisymmetric Euler equations

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani (2008)

Journées Équations aux dérivées partielles

This paper deals with the global well-posedness of the 3 D axisymmetric Euler equations for initial data lying in critical Besov spaces B p , 1 1 + 3 p . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .

On the global existence for the Muskat problem

Peter Constantin, Diego Córdoba, Francisco Gancedo, Robert M. Strain (2013)

Journal of the European Mathematical Society

The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an L 2 ( ) maximum principle, in the form of a new “log” conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance f 1 1 / 5 . Previous results of this...

On the global regularity of N -dimensional generalized Boussinesq system

Kazuo Yamazaki (2015)

Applications of Mathematics

We study the N -dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.

On the global regularity of subcritical Euler–Poisson equations with pressure

Eitan Tadmor, Dongming Wei (2008)

Journal of the European Mathematical Society

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ 1 , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 × 2 p -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann...

Currently displaying 341 – 360 of 591