On the local and global well-posedness theory for the KP-I equation
In a series of recent papers, Martel and Merle solved the long-standing open problem on the existence of blow up solutions in the energy space for the critical generalized Korteweg- de Vries equation. Martel and Merle introduced new tools to study the nonlinear dynamics close to a solitary wave solution. The aim of the talk is to discuss the main ideas developed by Martel-Merle, together with a presentation of previously known closely related results.
We show that the global-in-time solutions to the compressible Navier-Stokes equations driven by highly oscillating external forces stabilize to globally defined (on the whole real line) solutions of the same system with the driving force given by the integral mean of oscillations. Several stability results will be obtained.
Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be , and in the variable exponent case, L² and -weak.
The paper contains the estimates from above of the principal curvatures of the solution to some curvature equations. A correction of the author's previous argument is presented.
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We consider the Neumann problem for an elliptic system of two equations involving the critical Sobolev nonlinearity. Our main objective is to study the effect of the coefficient of the critical Sobolev nonlinearity on the existence and nonexistence of least energy solutions. As a by-product we obtain a new weighted Sobolev inequality.
We establish the existence of solutions for the Neumann problem for a system of two equations involving a homogeneous nonlinearity of a critical degree. The existence of a solution is obtained by a constrained minimization with the aid of P.-L. Lions' concentration-compactness principle.
We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.
We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.