Displaying 541 – 560 of 591

Showing per page

Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements

Yves Capdeboscq, Michael S. Vogelius (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We recently derived a very general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction (cf. Capdeboscq and Vogelius (2003)). In this paper we show how this representation formula may be used to obtain very accurate estimates for the size of the inhomogeneities in terms of multiple boundary measurements. As demonstrated by our computational experiments, these estimates are significantly better than previously known (single...

Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements

Yves Capdeboscq, Michael S. Vogelius (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We recently derived a very general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction ( cf. Capdeboscq and Vogelius (2003)). In this paper we show how this representation formula may be used to obtain very accurate estimates for the size of the inhomogeneities in terms of multiple boundary measurements. As demonstrated by our computational experiments, these estimates are significantly better than previously known...

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Optimal measures for the fundamental gap of Schrödinger operators

Nicolas Varchon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.

Optimal regularity for the pseudo infinity Laplacian

Julio D. Rossi, Mariel Saez (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.

Optimal time and space regularity for solutions of degenerate differential equations

Alberto Favaron (2009)

Open Mathematics

We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.

Optimality conditions for semilinear parabolic equations with controls in leading term

Hongwei Lou (2011)

ESAIM: Control, Optimisation and Calculus of Variations

An optimal control problem for semilinear parabolic partial differential equations is considered. The control variable appears in the leading term of the equation. Necessary conditions for optimal controls are established by the method of homogenizing spike variation. Results for problems with state constraints are also stated.

Optimality conditions for semilinear parabolic equations with controls in leading term*

Hongwei Lou (2011)

ESAIM: Control, Optimisation and Calculus of Variations

An optimal control problem for semilinear parabolic partial differential equations is considered. The control variable appears in the leading term of the equation. Necessary conditions for optimal controls are established by the method of homogenizing spike variation. Results for problems with state constraints are also stated.

Currently displaying 541 – 560 of 591