Displaying 521 – 540 of 591

Showing per page

On weakly A-harmonic tensors

Bianca Stroffolini (1995)

Studia Mathematica

We study very weak solutions of an A-harmonic equation to show that they are in fact the usual solutions.

On weighted estimates of solutions of nonlinear elliptic problems

Igor V. Skrypnik, Dmitry V. Larin (1999)

Mathematica Bohemica

The paper is devoted to the estimate u(x,k)Kk{capp,w(F)pw(B(x,))} 1p-1, 2 p < n for a solution of a degenerate nonlinear elliptic equation in a domain B ( x 0 , 1 ) F , F B ( x 0 , d ) = { x n | x 0 - x | < d } , d < 1 2 , under the boundary-value conditions u ( x , k ) = k for x F , u ( x , k ) = 0 for x B ( x 0 , 1 ) and where 0 < ρ d i s t ( x , F ) , w ( x ) is a weighted function from some Muckenhoupt class, and c a p p , w ( F ) , w ( B ( x , ρ ) ) are weighted capacity and measure of the corresponding sets.

Ondes progressives pour l’équation de Gross-Pitaevskii

Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut (2007/2008)

Séminaire Équations aux dérivées partielles

Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

Ondes soniques

G. Métivier (1987/1988)

Séminaire Équations aux dérivées partielles (Polytechnique)

One-dimensional symmetry for solutions of quasilinear equations in R 2

Alberto Farina (2003)

Bollettino dell'Unione Matematica Italiana

In this paper we consider two-dimensional quasilinear equations of the form div a u u + f u = 0 and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of u (notice that arg u is a well-defined real function since u > 0 on R 2 ) we prove that u is one-dimensional, i.e., u = u ν x for some unit vector ν . As a consequence of our result we obtain that any solution u having one positive derivative is one-dimensional. This result provides a proof of...

One-dimensional symmetry of periodic minimizers for a mean field equation

Chang-Shou Lin, Marcello Lucia (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider on a two-dimensional flat torus T defined by a rectangular periodic cell the following equation Δ u + ρ e u T e u - 1 | T | = 0 , T u = 0 . It is well-known that the associated energy functional admits a minimizer for each ρ 8 π . The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting λ 1 ( T ) to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever ρ min { 8 π , λ 1 ( T ) | T | } . Our results hold more generally for solutions that are Steiner symmetric, up to a translation....

Currently displaying 521 – 540 of 591