Displaying 41 – 60 of 219

Showing per page

The Dirichlet problem in weighted spaces on a dihedral domain

Adam Kubica (2009)

Banach Center Publications

We examine the Dirichlet problem for the Poisson equation and the heat equation in weighted spaces of Kondrat'ev's type on a dihedral domain. The weight is a power of the distance from a distinguished axis and it depends on the order of the derivative. We also prove a priori estimates.

The discrete maximum principle for Galerkin solutions of elliptic problems

Tomáš Vejchodský (2012)

Open Mathematics

This paper provides an equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-dimension and to the lowest-order finite elements on simplices of arbitrary dimension. The paper surveys...

The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in L 2 -norms is established. A structure of the reachable sets for arbitrary T > 0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input → state" map in L2-norms is established. A structure of the reachable sets for arbitrary T>0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model

Shin-Ichiro Ei, Tohru Tsujikawa (2009)

Kybernetika

Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in 2 and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...

The elliptic problems in a family of planar open sets

Abdelkader Tami (2019)

Applications of Mathematics

We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions...

The energy method for a class of hyperbolic equations

Enrico Jannelli (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0. Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

The equation 2 u + a 10 ( x , y ) u x + a 01 ( x , y ) u y + a 00 ( x , y ) u = F ( x , y ) . Estimates connected to boundary value problems

Alberto Cialdea (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

. The determination of costant of (1.5) is given when existence and uniqueness hold. If p = 2 , whatever the index, a method for computation of costant is developed.

The existence of a periodic solution of a parabolic equation with the Bessel operator

Dana Lauerová (1984)

Aplikace matematiky

In this paper, the existence of an ω -periodic weak solution of a parabolic equation (1.1) with the boundary conditions (1.2) and (1.3) is proved. The real functions f ( t , r ) , h ( t ) , a ( t ) are assumed to be ω -periodic in t , f L 2 ( S , H ) , a , h such that a ' L ( R ) , h ' L ( R ) and they fulfil (3). The solution u belongs to the space L 2 ( S , V ) L ( S , H ) , has the derivative u ' L 2 ( S , H ) and satisfies the equations (4.1) and (4.2). In the proof the Faedo-Galerkin method is employed.

The existence of an exponential attractor in magneto-micropolar fluid flow via the ℓ-trajectories method

Piotr Orliński (2013)

Colloquium Mathematicae

We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.

The finite speed of propagation of solutions of the Neumann problem of a degenerate parabolic equation

Jiaqing Pan (2011)

Open Mathematics

In this paper the finite speed of propagation of solutions and the continuous dependence on the nonlinearity of a degenerate parabolic partial differential equation are discussed. Our objective is to derive an explicit expression for the speed of propagation and the large time behavior of the solution and to show that the solution continuously depends on the nonlinearity of the equation.

Currently displaying 41 – 60 of 219