Displaying 81 – 100 of 138

Showing per page

Nonlinear Tensor Diffusion in Image Processing

Stašová, Olga, Mikula, Karol, Handlovičová, Angela, Peyriéras, Nadine (2017)

Proceedings of Equadiff 14

This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...

Nonlinear vibrations of completely resonant wave equations

Massimiliano Berti (2007)

Banach Center Publications

We present recent existence results of small amplitude periodic and quasi-periodic solutions of completely resonant nonlinear wave equations. Both infinite-dimensional bifurcation phenomena and small divisors difficulties occur. The proofs rely on bifurcation theory, Nash-Moser implicit function theorems, dynamical systems techniques and variational methods.

Nonlocal quadratic evolution problems

Piotr Biler, Wojbor Woyczyński (2000)

Banach Center Publications

Nonlinear nonlocal parabolic equations modeling the evolution of density of mutually interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional power of the Laplacian. Conditions for global in time existence versus finite time blow-up are studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo approximation schemes by interacting...

Nonlocal variational problems arising in long wave propagatioN

Orlando Lopes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the existence of minimizer for certain constrained variational problems given by functionals with nonlocal terms. This type of functionals are first integrals of evolution equations describing long wave propagation and the existence of minimizer gives the existence and the stability of traveling waves for these equations. Due to loss of compactness, the major problem is to prevent dichotomy of minimizing sequences. Our approach is an alternative to the concentration-compactness...

Non-Markovian quadratic forms obtained by homogenization

Marc Briane (2003)

Bollettino dell'Unione Matematica Italiana

This paper is devoted to the asymptotic behaviour of quadratic forms defined on L 2 . More precisely we consider the Γ -convergence of these functionals for the L 2 -weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.

Non-negative solutions to fast diffusions.

Bjorn E. J. Dahlberg, Carlos E. Kenig (1988)

Revista Matemática Iberoamericana

The purpose of this work is to study the class of non-negative continuous weak solutions of the non-linear evolution equation∂u/∂t = ∆φ(u),   x ∈ Rn, 0 < t < T ≤ +∞.

Currently displaying 81 – 100 of 138