Displaying 101 – 120 of 5232

Showing per page

A Hamilton-Jacobi approach to junction problems and application to traffic flows

Cyril Imbert, Régis Monneau, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...

A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α.

Luis A. Caffarelli (1987)

Revista Matemática Iberoamericana

This is the first in a series of papers where we intend to show, in several steps, the existence of classical (or as classical as possible) solutions to a general two-phase free-boundary system. We plan to do so by:(a) constructing rather weak generalized solutions of the free-boundary problems,(b) showing that the free boundary of such solutions have nice measure theoretical properties (i.e., finite (n-1)-dimensional Hausdorff measure and the associated differentiability properties),(c) showing...

Currently displaying 101 – 120 of 5232